Replacing a Mounted CryoLoop in a CrystalCap 更换 CrystalCap 中已安装的 CryoLoop

With one hand, using pliers, grasp the Mounted CryoLoop. Using your the other hand, hold the CrystalCap between your thumb and finger(s). With gentle authority twist the Mounted CryoLoop and Cap in opposing directions and pull the Mounted CryoLoop from the CrystalCap.

Select a Mounted CryoLoop with the desired CryoLoop size. Notice the notches on the Mounted CryoLoop. A standard length Mounted CryoLoop is created by snapping the MicroTube at the second notch from the bottom. Remove the end using your fingers or diagonal cutter. Apply a drop of Super Glue to the top opening of the CrystalCap. Insert the Mounted CryoLoop into this opening and push until the Mounted CryoLoop is stopped by the bottom of the CrystalCap. Epoxy may be used instead of Super Glue for a more permanent fixation of the Mounted CryoLoop to the CrystalCap.

用一只手用钳子抓住已安装的 CryoLoop。 用另一只手将 CrystalCap 夹在拇指和其他手指之间。 以温和的权威将已安装的 CryoLoop 和 Cap 朝相反方向扭转,然后将已安装的 CryoLoop 从 CrystalCap 中拉出。

选择具有所需 CryoLoop 尺寸的已安装 CryoLoop。 注意已安装的 CryoLoop 上的槽口。 标准长度的已安装 CryoLoop 是通过在从底部开始的第二个凹口处卡入 MicroTube 来创建的。 用手指或斜切刀去除末端。 在 CrystalCap 的顶部开口处涂抹一滴强力胶。 将已安装的 CryoLoop 插入此开口并推动,直到已安装的 CryoLoop 被 CrystalCap 的底部挡住。 可以使用环氧树脂代替强力胶,以便将已安装的 CryoLoop 更永久地固定在 CrystalCap 上。


Cryo for Ammonium sulfate and salt based crystallization reagents   用于硫酸铵和盐基结晶试剂的 Cryo

Increase the concentration of ammonium sulfate (cryosalt) (or primary salt acting as a precipitant) in increments of 10% in the presence of 5 to 10% v/v Glycerol.

Evaluate 25-30% w/v glucose, or trehalose or sucrose as cryoprotectants for crystals grown in Ammonium sulfate. Acta Cryst. (2002). D58, 1664-1669. Crystallization of RNA/protein complexes. M. Garber, G. Gongadze, V. Meshcheryakov, O. Nikonov, A. Nikulin, A. Perederina, W. Piendl, A. Serganov and S. Tishchenko.

15 to 30% v/v Ethylene glycol, DMSO, or Glycerol.

Try 1 – 2 M Sodium malonate as a cryoprotectant. Acta Cryst. (2003). D59, 2356-2358. Malonate: a versatile cryoprotectant and stabilizing solution for salt-grown macromolecular crystals. T. Holyoak, T. D. Fenn, M. A. Wilson, A. G. Moulin, D. Ringe and G. A. Petsko.

Place a drop of 75% v/v Paratone-N, 25% v/v Paraffin Oil next to the drop containing the crystal. Remove the crystal from the drop using a CryoLoop and dip the crystal into the oil. Keeping the CryoLoop and crystal immersed, gently move the CryoLoop containing the crystal from the oil into the reagent, back into the oil, back into the reagent, repeating this several times to remove some of the aqueous (reagent) layer from the crystal surface. Cryo cool the crystal.

在 5 至 10% v/v 甘油存在的情况下,以 10% 的增量增加硫酸铵(冰晶盐)(或用作沉淀剂的初级盐)的浓度。

评估 25-30% w/v 葡萄糖、海藻糖或蔗糖作为在硫酸铵中生长的晶体的冷冻保护剂。晶体学报。 (2002 年)。 D58,1664-1669。 RNA/蛋白质复合物的结晶。 M. Garber、G. Gongadze、V. Meshcheryakov、O. Nikonov、A. Nikulin、A. Perederina、W. Piendl、A. Serganov 和 S. Tishchenko。

15 至 30% v/v 乙二醇、DMSO 或甘油。

尝试 1 – 2 M 丙二酸钠作为冷冻保护剂。晶体学报。 (2003 年)。 D59,2356-2358。丙二酸盐:一种用于盐生大分子晶体的多功能冷冻保护剂和稳定溶液。 T. Holyoak、T. D. Fenn、M. A. Wilson、A. G. Moulin、D. Ringe 和 G. A. Petsko。

在含有晶体的液滴旁边放置一滴 75% v/v Paratone-N、25% v/v 石蜡油。使用 CryoLoop 从液滴中取出晶体并将晶体浸入油中。保持 CryoLoop 和晶体浸没,轻轻地将含有晶体的 CryoLoop 从油中移入试剂中,再移回油中,再移回试剂中,重复几次以去除晶体表面的一些水(试剂)层。低温冷却晶体。

Cleaning a CryoLoop   CryoLoop环的清洗方法

Cleaning a CryoLoop   CryoLoop环的清洗方法

Soak the CryoLoop in a 0.5% detergent solution in deionized water for 15 minutes. Gently rinse the CryoLoop in deionized water. Allow the CryoLoop to air dry.

If more rigorous cleaning is desired or one does not wish to risk the presence of trace amounts of residual detergent, soak the CryoLoop in 5.0 M Urea formulated in deionized water for 15 minutes. Gently rinse the CryoLoop in deionized water. Repeat three times. Allow the CryoLoop to air dry.

将 CryoLoop 浸泡在 0.5% 去离子水中的清洁剂溶液中 15 分钟。 在去离子水中轻轻冲洗 CryoLoop。 让 CryoLoop 风干。

如果需要更严格的清洁或不想冒残留洗涤剂残留的风险,请将 CryoLoop 浸泡在 5.0 M 去离子水中配制的尿素中 15 分钟。 在去离子水中轻轻冲洗 CryoLoop。 重复三遍。 让 CryoLoop 风干。



Cryo trouble?

Cryo Trouble? Give the following tips a try next time your crystal is fussy about freezing.

Try X-ray data collection at room temperature.

Evaluate other cryoprotectants. Try CryoPro from Hampton Research, which contains 36 unique cryopreservation reagents.
For more information visit http://hamptonresearch.com/product_detail.aspx?cid=30&sid=189&pid=30

Mixing of different cryoprotectants can have a superior protective effect over single component cryoprotectants of the same total concentration.

冷冻麻烦? 下次当您的水晶对冷冻很挑剔时,请尝试以下提示。

尝试在室温下收集 X 射线数据。

评估其他冷冻保护剂。 试试 Hampton Research 的 CryoPro,它包含 36 种独特的冷冻保存试剂。
欲了解更多信息,请访问 http://hamptonresearch.com/product_detail.aspx?cid=30&sid=189&pid=30


Change the rate of cooling.  改变冷却速度。

a) Accelerate the rate of cooling. The fastest cooling rates have been achieved by blowing off the gas layer on liquid nitrogen during plunge cooling. (Hyperquenching for protein cryocrystallography, M. Warkentin et al, J. Appl. Cryst. (2006). 39, 805-811)

b) Slow the rate of cooling. Perhaps better suited to crystals with smaller solvent channels. The key to successful slow cooling of protein crystals is to carefully and completely remove all of the solvent from the surface of the crystal using oil such as Paratone-N, Perfluoropolyether, Mineral, Silicon, NVH or other. Remove ALL of the liquid from the surface of the crystals when using oil. (Slow cooling and temperature-controlled protein crystallography, Warkentin et al 10.1007/s10969-009-9074-y and Slow cooling of protein crystals, Warkentin et al, Volume 42, Part 5, Pages 944-952, October 2009) For more information visit http://hamptonresearch.com/menus.aspx?id=3&sid=138

a) 加快冷却速度。 通过在骤冷期间吹掉液氮上的气体层,可以实现最快的冷却速度。 (蛋白质低温晶体学的超淬灭,M. Warkentin 等人,J. Appl. Cryst. (2006). 39, 805-811)

b) 减慢冷却速度。 也许更适合溶剂通道较小的晶体。 成功缓慢冷却蛋白质晶体的关键是使用 Paratone-N、全氟聚醚、矿物、硅、NVH 或其他油等仔细彻底地去除晶体表面的所有溶剂。 使用油时,除去晶体表面的所有液体。 (缓慢冷却和温度控制的蛋白质晶体学,Warkentin 等人 10.1007/s10969-009-9074-y 和蛋白质晶体的缓慢冷却,Warkentin 等人,第 42 卷,第 5 部分,第 944-952 页,2009 年 10 月) 访问 http://hamptonresearch.com/menus.aspx?id=3&sid=138

Using salt as a crystallization reagent? Many salts are cryosalts, including malonate, formate, citrate, tartrate, acetate, Tacsimate and other organic acids, ammonium sulfate (>3.5 M), lithium sulfate, lithium chloride and other alkylammonium salts. For cryo try increasing your salt concentration by 20%. (Cryosalts: suppression of ice formation in macromolecular crystallography, K. A. Rubinson et al, Acta Cryst. (2000). D56, 996-1001 doi:10.1107/S0907444900007587.

Try the identical cryo procedure again with another crystal.

Vary the time and temperature of the crystal handling steps.

Check the liquid nitrogen level in your dewar and maintain a consistent level, day to day, week to week, month to month, year to year.

Try annealing. (Macromolecular crystal annealing: Techniques and cases studies. Bunick et al, The Rigaku Journal Vol. 15/ number 2/ 1998 and Macromolecular crystal annealing: overcoming increased mosaicity associated with cryocrystallography, Harp et al. (1998). Acta Cryst. D54, 622-8

使用盐作为结晶试剂?很多盐是冰晶盐,包括丙二酸盐、甲酸盐、柠檬酸盐、酒石酸盐、乙酸盐、Tacsimate和其他有机酸、硫酸铵(>3.5 M)、硫酸锂、氯化锂和其他烷基铵盐。对于冷冻,尝试将盐浓度提高 20%。 (冷冻盐:大分子晶体学中冰形成的抑制,K. A. Rubinson 等人,Acta Cryst. (2000). D56, 996-1001 doi:10.1107/S0907444900007587。




尝试退火。 (高分子晶体退火:技术和案例研究。Bunick 等人,理学杂志第 15 卷/第 2 期/1998 年和高分子晶体退火:克服与低温晶体学相关的镶嵌性增加,Harp 等人(1998 年)。Acta Cryst. D54, 622-8

Match the osmotic pressure of your cryoprotectant to the osmotic pressure of the reagent producing the crystal. Crystallization reagents with lower salt concentrations require a higher percentage of cryoprotectant for cryo protection than crystallization reagents with higher salt solutions (Cool data: quantity and quality. Elspeth Garman. Acta Cryst. (1999). D55, 1641-1653.). Osmolality tables (Weast, R. C. (1988-1989). Editor. Handbook of Chemistry; Physics, 69th ed. Boca Raton, Florida: CRC Press) can be used to estimate the osmolality of reagents. Another trick is to slowly concentrate a drop of the mother liquor by leaving the drop open to air and allowing the drop to slowly dry down, checking the mother liquor for clear glass freeze every few minutes. If you do not have X-rays to check for clear glass freeze, you can guesstimate by carefully placing the dewar under a dissecting microscope with overhead lighting. Focus on the surface of the liquid nitrogen, and bring the cooled loop into view just above the surface of the liquid nitrogen, where it is cold enough for guesstimate freezing.

使冷冻保护剂的渗透压与产生晶体的试剂的渗透压相匹配。与具有较高盐溶液的结晶试剂相比,具有较低盐浓度的结晶试剂需要更高百分比的冷冻保护剂来进行冷冻保护(酷数据:数量和质量。Elspeth Garman. Acta Cryst. (1999). D55, 1641-1653.)。渗透压表 (West, R. C. (1988-1989). Editor. Handbook of Chemistry; Physics, 69th ed. Boca Raton, Florida: CRC Press) 可用于估计试剂的渗透压。另一个技巧是慢慢浓缩一滴母液,方法是让一滴母液对空气敞开,让液滴慢慢干燥,每隔几分钟检查一次母液是否有透明玻璃结冰。如果您没有 X 射线来检查透明玻璃是否冻结,您可以通过将杜瓦瓶小心地放在带顶灯的解剖显微镜下进行猜测。专注于液氮的表面,将冷却回路置于液氮表面上方的视野中,那里足够冷,可以推测冻结。

Try high pressure cooling. (High-pressure cooling of protein crystals without cryoprotectants, Kim et al, Acta Cryst. (2005). D61, 881–890)

Cryoprotection of delicate crystals – Artem Evdokimov’s humble recipe.

Two words. Liquid propane.

Roger S. Rowlett’s Cryoprotectant Strategy
1. Transfer crystals to mother liquor plus 30%v/v glycerol or ethylene glycol (sometimes lower depending on crystallization
2. Transfer crystals to mother liquor plus 30%w/v glucose (or try sequential soaks in mother liquor plus 15%w/v and then 30%w/v glucose. Just a few seconds or minutes is usually enough). Glucose or other sugars often work when glycerol or ethylene glycol fails.
3. Try the “no-fail” in situ cryo method, which is a gradual buildup of cryoprotectant. This method is especially appropriate for crystals that cannot tolerate direct transfer to cryoprotectant solution, or for crystals that are especially sensitive to concentration changes in the mother liquor driven by drop evaporation. In our laboratory this method is routinely used with success on otherwise very sensitive crystals. This particular method is adapted for hanging drop crystallization. Ligands can be soaked in at the same time as cryopreservation if included in the cryoprotectant solution at 125% of the final, desired concentration.
a) Prepare a solution of artificial mother liquor plus 30% w/v glucose (40% v/v glycerol or another cryoprotectant can be substituted)
b) Remove a coverslip containing a drop with crystals to be cryoprotected and add 0.25 drop volume (DV) of cryoprotectant solutions (e.g. for a 4 uL drop add 1 uL of cryoprotectant solution). Replace coverslip on well and let stand for 5 minutes. Examine the crystals for cracking and/or dissolution.
c) Repeat the previous step with the following additional cryoprotectant additions: 0.25 DV, 0.50 DV, 1.00 DV, 2.00 DV. After each addition replace the coverslip over the well and let stand for 5 minutes. Examine crystals for cracking and/or dissolution.
d) After the last addition and 5 minute incubation, remove coverlip, fish out crystals with mounting loops and freeze directly in liquid nitrogen. The final glucose concentration will be 24%, sufficient to protect most crystallization solutions from ice formation upon freezing in liquid nitrogen.
This is very gentle, and often works when #1 and #2 does not, but in our hands nearly always increases mosaicity. (But mosaic is better than no diffraction.)
4. Try dragging crystals though Paratone-N to remove surface water from the crystal. This actually nearly always works for us, but is more fussy than #1 or #2, and it is easier to damage crystals during manipulation because of the viscosity of the oil.
I normally plunge protected crystals into liquid nitrogen after mounting.
Ice rings are a good indication of poor cryoprotection, but lack of diffraction could just be your crystals, too. For our latest dataset, we just sorted through 38 crystals until we found a good one. The key, as it turned out, is that all of our beautiful large crystals were apparently difficult to visualize disordered stacks of plates (we didn’t notice this until some fractured during cryo-soaks) whereas some of the small crystals were actually single crystals. We selected a decently diffracting small one and took loooooooooooong frames to get a good data set. (Roger S. Rowlett, Professor, Colgate University Presidential Scholar, Department of Chemistry, Colgate University, NY, USA)

Dig around in the cryoprotectant database for ideas. http://idb.exst.jaxa.jp/db_data/protein/search-e.php

Try 10% glycerol. (Jim Pflugrath)

Try 10 to 20% 2,3-butanediol. It can also reduce mosaicity. Try a quick dip, 30 to 60 seconds.

Fine tune the cryo concentration by screening 2.5% concentration increments, dipping a loop in the cryo buffer, freezing it and collecting X-Ray diffraction data to find the minimum concentration required that produces a clear glass and no ice rings.

Try dragging the crystal through a 1:1 mix of Paratone-N and Mineral oil until most or all the mother liquor from surrounding the crystal has been removed. (David Briggs)

Look back in your screen plates for a different crystal in different reagent, do not pass go, do not collect $200.00 and start over at the top of this tip.

Roger S. Rowlett 的冷冻保护剂策略
1. 将晶体转移到母液中,加入 30%v/v 甘油或乙二醇(有时根据结晶情况降低
2. 将晶体转移到加 30%w/v 葡萄糖的母液中(或尝试在母液中依次浸泡加 15%w/v 和 30%w/v 葡萄糖。通常只需几秒钟或几分钟就足够了)。当甘油或乙二醇失效时,葡萄糖或其他糖通常会起作用。
3. 尝试“不失败”的原位冷冻方法,这是一种逐渐积累的冷冻保护剂。这种方法特别适用于不能直接转移到冷冻保护剂溶液中的晶体,或对液滴蒸发驱动的母液浓度变化特别敏感的晶体。在我们的实验室中,这种方法通常成功地用于其他非常敏感的晶体。这种特殊的方法适用于悬滴结晶。如果在冷冻保护剂溶液中以最终所需浓度的 125% 包含配体,则可以在冷冻保存的同时浸泡配体。
a) 制备人工母液加 30% w/v 葡萄糖的溶液(可以用 40% v/v 甘油或其他冷冻保护剂代替)
b) 取出含有一滴需要冷冻保护的晶体的盖玻片,加入 0.25 滴体积 (DV) 的冷冻保护剂溶液(例如,对于 4 uL 的液滴,加入 1 uL 的冷冻保护剂溶液)。盖好盖玻片,静置 5 分钟。检查晶体是否破裂和/或溶解。
c) 重复上一步,添加以下额外的冷冻保护剂:0.25 DV、0.50 DV、1.00 DV、2.00 DV。每次添加后,更换孔上的盖玻片并静置 5 分钟。检查晶体是否开裂和/或溶解。
d) 最后一次添加和孵育 5 分钟后,取下盖玻片,用固定环捞出晶体并直接在液氮中冷冻。最终的葡萄糖浓度为 24%,足以保护大多数结晶溶液在液氮中冷冻时不会结冰。
这是非常温和的,并且通常在 #1 和 #2 不起作用时起作用,但在我们手中几乎总是会增加镶嵌性。 (但马赛克总比没有衍射要好。)
4. 尝试通过 Paratone-N 拖动晶体以去除晶体中的表面水。这实际上几乎总是对我们有用,但比 #1 或 #2 更挑剔,并且由于油的粘度,在操作过程中更容易损坏晶体。
冰环是低温保护不良的一个很好的迹象,但缺乏衍射也可能只是你的晶体。对于我们最新的数据集,我们只是对 38 个晶体进行分类,直到找到一个好的晶体。事实证明,关键是我们所有美丽的大晶体显然很难看到无序的叠层板(直到在低温浸泡过程中有些破裂我们才注意到这一点),而一些小晶体实际上是单晶.我们选择了一个像样的衍射小帧,并用了 looooooooooooong 帧来获得一个好的数据集。 (Roger S. Rowlett,美国纽约州科尔盖特大学化学系科尔盖特大学校长学者教授)

在冷冻保护剂数据库中四处寻找想法。 http://idb.exst.jaxa.jp/db_data/protein/search-e.php

试试 10% 的甘油。 (吉姆·普弗拉格拉斯)

尝试使用 10 至 20% 的 2,3-丁二醇。它还可以减少镶嵌性。尝试快速浸泡 30 到 60 秒。

通过筛选 2.5% 的浓度增量来微调低温浓度,在低温缓冲液中浸一个循环,将其冷冻并收集 X 射线衍射数据,以找到产生透明玻璃和无冰环所需的最低浓度。

尝试将晶体拖过 Paratone-N 和矿物油的 1:1 混合物,直到去除晶体周围的大部分或全部母液。 (大卫布里格斯)

在您的筛板中查看不同试剂中的不同晶体,不要错过,不要收取 200.00 美元,然后从本提示的顶部重新开始。

Mounting thin crystals 安装晶体环方法

Mounting thin crystals 安装晶体环方法

To mount very thin crystals onto cryoloops, first dip the nylon loop into 0.5% Formvar solution (Fluka # 09819) to form a thin film. The film provides extra support for fragile crystals, and can result in much sharper reflections with just slightly higher background. To clean the loop, dip it in alcohol to dissolve the support. Two notes: (1) the technique works only for crystals grown without organic solvents, and (2) take precautions not to breathe vapor from the formvar solution–the solvent is 1,2 dichloroethane. Formvar is a standard support for electron microscopy grids.

要将非常薄的晶体安装到冷冻环上,首先将尼龙环浸入 0.5% Formvar 溶液 (Fluka # 09819) 中以形成薄膜。 该薄膜为易碎的晶体提供了额外的支撑,并且可以在背景稍高的情况下产生更清晰的反射。 要清洁环,请将其浸入酒精中以溶解支撑物。 两个注意事项:(1) 该技术仅适用于在没有有机溶剂的情况下生长的晶体,以及 (2) 采取预防措施,不要从 formvar 溶液中吸入蒸汽——溶剂是 1,2 二氯乙烷。 Formvar 是电子显微镜网格的标准支持。

Cryo buffer 冷冻缓冲液

Cryo buffer 冷冻缓冲液

We’ve had good success using the well solution directly as the foundation of a cryobuffer in several situations where crystals cannot be grown directly in the presence of cryoprotectant, and where crystals don’t tolerate transfer to artificial mother liquors. The basic protocol is as follows:

1. Remove 100 microliters of the well solution after crystals have grown

2. Split this sample into two 50 microliter aliquots.

3. Add 7.5 mg of dextrose (glucose) to the first aliquot and 15 mg of dextrose to the second. Dissolve by gentle pipeting with a wide-bore tip. This will give two sequential well solutions that now contain 15% and 30% w/v dextrose. If all the dextrose won’t go into the second aliquot, spin hard and remove the supernatant.

4. Transfer the crystal to aliquot 1, equilibrate for 3 minutes, then to aliquot number 2, then freeze. We’ve had a few crystals that routinely crack or blow up when transfered to artificial mother liquor that behave well when transfered to well solution plus glucose. We assume that there is some aspect of the crystal drop (pH, ionic tension, precipitant concentration) that is more effectively reproduced within the well than by separately prepared mother liquors. The nice thing about the protocol above is that you don’t get much of a volume increase when dry dextrose is dissolved in the well solution, so the components in the solution are not diluted.

Finally, if you don’t get a really good freeze, you can try to add about 5% v/v glycerol to aliquot 2 in addition to the 30% w/v dextrose. Reference: Personal communication from Barry Stoddard, Fred Hutchinson Cancer Research Center


1. 晶体生长后取出 100 微升孔溶液

2. 将此样品分成两份 50 微升的等份。

3. 在第一个等分试样中加入 7.5 mg 葡萄糖(葡萄糖),在第二个等分试样中加入 15 mg 葡萄糖。用大口径吸头轻轻吹打溶解。这将给出两个顺序井解决方案,现在包含 15% 和 30% w/v 葡萄糖。如果所有的葡萄糖都不会进入第二个等分试样,请用力旋转并去除上清液。

4. 将晶体转移到 1 号等分试样中,平衡 3 分钟,然后转移到 2 号等分试样中,然后冷冻。我们有一些晶体在转移到人造母液中时会经常破裂或爆炸,当转移到井溶液和葡萄糖中时表现良好。我们假设晶体液滴的某些方面(pH、离子张力、沉淀剂浓度)在井内比单独制备的母液更有效地再现。上述协议的好处是,当干葡萄糖溶解在孔溶液中时,体积不会增加太多,因此溶液中的成分不会被稀释。

最后,如果您没有得到很好的冷冻效果,除了 30% w/v 葡萄糖外,您可以尝试在等分试样 2 中添加约 5% v/v 甘油。参考:来自 Fred Hutchinson 癌症研究中心的 Barry Stoddard 的个人交流

Hampton 酒石酸铵 Ammonium tartrate dibasic

Hampton 酒石酸铵 Ammonium tartrate dibasic

Ammonium tartrate dibasic  酒石酸铵


  • Crystallization grade Ammonium tartrate dibasic for formulating screens or for optimization  结晶级酒石酸铵,用于筛选或优化


  • Sterile filtered solution
  • Formulated in Type 1+ ultrapure water: 18.2 megaohm-cm resistivity at 25°C, < 5 ppb Total Organic Carbon, bacteria free (<1 Bacteria (CFU/ml)), pyrogen free (<0.03 Endotoxin (EU/ml)), RNase-free (< 0.01 ng/mL) and DNase-free (< 4 pg/µL)
  • 无菌过滤液
  • 在1+超纯水中配制:在25°C下电阻率为18.2兆,总有机碳<5 ppb,无细菌(<1细菌(CFU/ml)),无热原(<0.03内毒素(EU/ml)),无RNase(<0.01 ng/mL)和无DNase(<4 pg/L)


Ammonium tartrate dibasic

Synonym: L-(+)-Tartaric acid diammonium salt or Diammonium tartrate
Mr 184.15
CAS Number [3164-29-2]
EC Number 221-618-9
Beilstein Registry Number 6120352
RTECS WW8050000
MDL Number MFCD00013073
PubChem Substance ID 24846510
Purity ≥ 99.5%

HR2-679 Measured pH Range: 6.3 – 6.9 at 25°C
HR2-679 Measured Conductivity Range: 118.2 – 134.4 mS/cm at 25°C
HR2-679 Measured Refractive Index Range: 1.39169 – 1.39346 at 20°C

HR2-767 titrated to pH 7.0 using NaOH at 25°C
HR2-767 Measured Conductivity Range: 115.7 – 129.6 mS/cm at 25°C
HR2-767 Measured Refractive Index Range: 1.38057 – 1.38157 at 20°C

Al ≤0.0005%
As ≤0.00001%
Ba ≤0.0005%
Bi ≤0.0005%
Ca ≤0.0005%
Cd ≤0.0005%
Cl ≤0.005%
Co ≤0.0005%
Cr ≤0.0005%
Cu ≤0.0005%
Fe ≤0.0005%
K ≤0.005%
Li ≤0.0005%
Mg ≤0.0005%
Mn ≤0.0005%
Mo ≤0.0005%
Na ≤0.005%
Ni ≤0.0005%
Pb ≤0.0005%
SO4 ≤0.005%
Sr ≤0.0005%



Mr 184.15
RTECS WW8050000
PubChem物质ID 24846510

HR2-679在25°C下的电导率范围:118.2~134.4 ms/cm。

HR2-767测量电导率范围:25°C下115.7~129.6 ms/cm。


HR2-679 2.0 M Ammonium tartrate dibasic 200 mL
HR2-767 1.6 M Ammonium tartrate dibasic pH 7.0 200 mL


1. Overexpression, crystallization and preliminary X-ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa. J. Y. Ha, J. H. Lee, K. H. Kim, D. J. Kim, H. H. Lee, H.-K. Kim, H.-J. Yoon and S. W. Suh. Acta Cryst. (2006). F62, 139-141.

Hampton盖玻片 Cover Slides(Siliconized Glass & Plastic Slides)

Hampton盖玻片 Cover Slides(Siliconized Glass & Plastic Slides)

Crystallization Plates, Hardware & Accessories Cover Slides & Related Tools >

12 mm Siliconized Glass Cover Slides


12 mm硅化玻璃盖板滑片


  • 用于悬挂和坐滴结晶的硅化玻璃盖板滑片
  • 悬滴结晶
  • 坐滴结晶
  • 夹层滴结晶


  • 高纯玻璃
  • 硅化的、疏水性玻璃表面
  • 0.22毫米及0.96毫米玻璃厚度
  • 12毫米玻璃直径
  • 0.22毫米玻璃厚度与紫外线兼容(透射率>85%)




临界表面张力未处理玻璃78 dynes/cm硅化玻璃31 dynes/cm表面电阻率未处理玻璃1×1012欧姆硅化玻璃1.2×1013欧姆摩擦系数静态,玻璃玻片上未经处理的0.9-1.0硅化0.2-0.3蛋白吸附(100小时)未处理玻璃0.13mg/mm2硅化玻璃0.01-0.02 mg/mm2

HR3-277和HR3-279-12毫米x 0.22毫米硅化圆盖幻灯片
HR3-231和HR3-233-22毫米x 0.22毫米硅化圆盖幻灯片
HR3-239和HR3-241-18毫米x 0.22毫米硅化圆盖幻灯片
HR3-215和HR3-217-22毫米x 0.22毫米硅化方盖幻灯片


  • Siliconized glass cover slides for hanging & sitting drop crystallization
  • Hanging drop crystallization
  • Sitting drop crystallization
  • Sandwich drop crystallization


  • High purity of glass
  • Siliconized, hydrophobic glass surface
  • 0.22 mm & 0.96 mm glass thickness
  • 12 mm glass diameter
  • Circle
  • 0.22 mm glass thickness is UV Compatible (>85% transmission)


Siliconized glass cover slides allow a droplet to be suspended in a position which provides near optimal conditions for vapor diffusion with the surrounding reservoir solution.

These siliconized glass cover slides provide a consistent, high quality finish for crystallization experiments. The hydrophobic surface produces a drop which “stands well” and does not flatten on the glass. The siliconized surface prevents the adhesion of crystals and precipitate onto the glass surface. Use Dow Corning Vacuum Grease (HR3-510) or Dow Corning 7 Release Compound (HR3-508) to seal cover slide to plate. Available in 12, 18 or 22 mm diameter circles and 22 mm diameter squares. Available in 0.22 mm or 0.96 mm glass thickness. The 0.96 mm thick slides are virtually unbreakable during crystallization handling.

Critical surface tension Untreated glass 78 dynes/cm Siliconized glass 31 dynes/cm Surface resistivity Untreated glass 1×1012 ohms Siliconized glass 1.2 x 1013 ohms Coefficient of friction static, glass slide on glass slide Untreated 0.9-1.0 Siliconized 0.2-0.3 Protein adsorption (100 hours) Untreated glass 0.13 mg/mm2 Siliconized glass 0.01-0.02 mg/mm2

The following slides are UV transmissible (>85%):
HR3-277 and HR3-279 – 12 mm x 0.22 mm Siliconized circle cover slides
HR3-231 and HR3-233 – 22 mm x 0.22 mm Siliconized circle cover slides
HR3-239 and HR3-241 – 18 mm x 0.22 mm Siliconized circle cover slides
HR3-215 and HR3-217 – 22 mm x 0.22 mm Siliconized square cover slides

HR3-278T Siliconized circle cover slides for Tecan robot 0.5 oz pack (~240 slides)
HR3-277 12 mm x 0.22 mm Siliconized circle cover slides 0.5 ounce pack (~240 slides)
HR3-279 12 mm x 0.22 mm Siliconized circle cover slides 5.0 ounce case (~2,400 slides)
HR8-088 12mmx0.96mmThick Siliconized circle cover slides 1.0 ounce pack (~106 slides)
HR8-090 12mmx0.96mm Thick Siliconized circle cover slides 10.0 ounce case (~1,060 slides)
18 mm Siliconized Glass Cover Slides



  • Siliconized glass cover slides for hanging & sitting drop crystallization
  • Hanging drop crystallization
  • Sitting drop crystallization
  • Sandwich drop crystallization
HR3-239 18 mm x 0.22 mm Siliconized circle cover slides 0.5 ounce pack (~100 slides)
HR3-241 18 mm x 0.22 mm Siliconized circle cover slides 5.0 ounce case (~1,000 slides)
HR3-515 18mmx0.96mm Thick Siliconized circle cover slides 1 oz pack (~45 slides)
HR3-517 18mmx0.96mm Thick Siliconized circle cover slides 10 oz case (~450 slides)
22 mm Siliconized Glass Cover Slides



  • Siliconized glass cover slides for hanging & sitting drop crystallization.
  • Hanging drop crystallization
  • Sitting drop crystallization
  • Sandwich drop crystallization
HR3-231 22 mm x 0.22 mm Siliconized circle cover slides 1.0 ounce pack (~120 slides)
HR3-233 22 mm x 0.22 mm Siliconized circle cover slides 10.0 ounce case (~1,200 slides)
HR3-247 22 mm x 0.96 mm Thick Siliconized circle cover slides 3 ounce pack (~75 slides)
HR3-249 22mmx 0.96mm Thick Siliconized circle cover slides 30.0 ounce case (~750 slides)
HR3-215 22 mm x 0.22 mm Siliconized square cover slides 1.0 ounce pack (~100 slides)
HR3-217 22 mm x 0.22 mm Siliconized square cover slides 10.0 ounce case (~1,000 slides)
HR3-223 22mmx0.96mm Thick Siliconized square cover slides 4.0 ounce pack (~75 slides)
HR3-225 22mmx0.96mm Thick Siliconized square cover slides 40.0 ounce case (~750 slides)


Glass Cover Slide Gizmo Dispenser


Siliconized Glass Coverslips (Greiner)


OptiClear Plastic Cover Slides




Cover Slide Vacuum Gadget

Hampton HR3-508 Dow Corning 7 Release Compound Grease

Hampton HR3-508 Dow Corning 7 Release Compound Grease


  • Grease sealant for hanging, sitting, and sandwich drop vapor diffusion set ups.



The Dow Corning® 7 Release Compound Grease sealant is similar to vacuum grease but is less viscous. Being less viscous, it is easier to push through a syringe when applying the sealant manually. Squeeze the grease into a 10 cc syringe fitted with a 200 µl pipet tip trimmed to desired diameter and you are ready to grease.

道康宁® 7 离型复合润滑脂密封剂类似于真空润滑脂,但粘性较低。 由于粘性较小,手动涂抹密封剂时更容易推动注射器。 将润滑脂挤入装有 200 µl 移液管尖端的 10 cc 注射器中,并修剪到所需的直径,您就可以润滑了。

HR3-508 Dow Corning 7 Release Compound Grease 150 g tube

Hampton 96孔蛋白结晶板Crystallization Plate (Swissci)

Hampton 96孔蛋白结晶板Crystallization Plate (Swissci)

Crystallization Plates, Hardware & Accessories | 96 Well Crystallization Plates


MRC Under Oil 96 Well


MRC 2 Well UVP


3 Well Midi Crystallization Plate


3 Well Low Profile Crystallization Plate
LCP Lipidic Cubic Phase Screening

Hampton 96 孔蛋白结晶板Crystallization Plate (Swissci)

96 well 3.2 µl capacity dialysis plate

CrystalEX (Corning)
Sitting drop crystallization

CrystalEX Second Generation (Corning)
Sitting drop crystallization

CrystalQuick 96 Well Sitting Drop Plate (Greiner)
Sitting drop crystallization

Intelli-Plate 96 (Art Robbins Instruments)
Sitting drop crystallization

MRC 2 Well Crystallization Plate (Swissci) UVXPO
Sitting drop crystallization UVXPO

MRC 2 Well Crystallization Plate (Swissci) UVP
Sitting drop crystallization UVP

3 Well Crystallization Plate (Swissci)
Sitting drop crystallization

FRAP Sandwich Set
FRAP Sandwich Set

LCP Sandwich Set
Crystallization screening of membrane proteins in lipidic mesophase as well as bicelle method and batch method

LCP Lipidic Cubic Phase Screening plate (Swissci)
Lipidic cubic phase crystallization

MRC Under Oil 96 Well Crystallization Plate (Swissci)
Microbatch crystallization

Imp@ct Plate without reservoir (Greiner)
Microbatch crystallization

MASTERBLOCK® 96 Deep Well Plate (Greiner)
Reagent storage

Microplate Lid
Cover for 96 well HT Screens and Masterblock

Hampton 96 孔蛋白结晶板Crystallization Plate (Swissci)

3 Well Crystallization Plate (Swissci)
Sitting drop crystallization

HR3-123 3 Well Midi Crystallization Plate (Swissci) 10 plate case
HR3-125 3 Well Midi Crystallization Plate (Swissci) 40 plate case
HR3-205 3 Well Low Profile Crystallization Plate (Swissci) 10 plate case
HR3-206 3 Well Low Profile Crystallization Plate (Swissci) 40 plate case

MRC 2 Well Crystallization Plate (Swissci) UVP

Sitting drop crystallization UVP

HR3-082 MRC 2 Well Crystallization Plate 10 plate case
HR3-083 MRC 2 Well Crystallization Plate 40 plate case

MRC 2 Well Crystallization Plate (Swissci) UVXPO
Sitting drop crystallization UVXPO

HR3-106 MRC 2 Well Crystallization Plate in UVXPO 10 plate case
HR3-107 MRC 2 Well Crystallization Plate in UVXPO 40 plate case

MRC Under Oil 96 Well Crystallization Plate (Swissci)
Microbatch crystallization

Microbatch crystallization

Easy crystal retrieval
Easy viewing
UV imaging compatible
Drop Volume 100 nanoliter to 4 microliter
Oil Volume 20 µl
SBS Standard
Ultra low binding polymer, no static

The MRC Under Oil 96 Well Crystallization Plate is designed for microbatch crystallization.

The plate was developed at the MRC Laboratory of Molecular Biology (Cambridge, United Kingdom) in collaboration with Dr. Jan Löwe and colleagues. It is a result of many years of experience in successful robotic high-throughput crystallization and combines many of the features not earlier available to the crystallographer.

The new MRC Under Oil 96 Well Crystallization Plate is designed for microbatch crystallization using paraffin, silicon oil, or a mixture of the two. Following the initial experiment, evaporation of the drop through the oil allows for second crystallization stage, enabling further crystal growth as a consequence of concentration. This is different from other experiments in that the conditions are then extreme in nature and permit new conditions to arise.

The new MRC Under Oil 96 Well Crystallization Plate offers unique properties that make it ideal for both nanoliter crystallization screening and microliter optimization alike. Made from an optically superior polymer and with a new design of the wells, the plate allows easy crystal viewing and retrieval.

The advantages of the new MRC Under Oil 96 Well Crystallization Plate.

Easy Crystal Retrieval
Raised wide wells make the crystal mounting especially easy.

Easy Viewing
The wells are wide conical and have a polished surface on both sides important for perfect illumination. The micro numbering ensures that you will never get lost again (visible by microscope). The optically superior polymer is even UV transmissible and may be used to differentiate between salt and crystals.

Better Sealing
Wide partition walls between the wells give plenty of area for good sealing with tape for the initial experiments of microbatch. No central bending occurs in this very robust structure.

Recommended Volumes
Typical volumes validated for these plates are 20 µl of oil with a shot through sample delivery of 100 nanoliter to 4 microliter.

SBS Standard
The plates are designed to the 96 well SBS standard for all common holders and external numbering (A – H, 1 – 12) with corner location that make the plate easy to use in a robotic sampler. The plate can also be centrifuged for better results. The unique MRC Under Oil 96 well Crystallization plate offers a new way of microbatch crystallography. The 96 wells are optically perfect, designed to observe crystals under a microscope.

Unique Polymer
The proprietary polymer is optically perfect – ultra low binding and guaranteed to have central drop location in the well. There are no static effects and thus micro-droplet jumping is avoided.

HR3-102 MRC Under Oil Crystallization Plate 10 plate case
HR3-104 MRC Under Oil Crystallization Plate 40 plate case